常用的三角函数公式

常用的三角函数公式

sin

2

x

+

cos

2

x

=

1

\sin ^2 x + \cos ^2 x = 1

sin2x+cos2x=1

tan

x

=

sin

x

cos

x

\tan x = \dfrac{\sin x}{\cos x}

tanx=cosxsinx​

cot

x

=

1

tan

x

=

cos

x

sin

x

\cot x = \dfrac{1}{\tan x}=\dfrac{\cos x}{\sin x}

cotx=tanx1​=sinxcosx​

sec

x

=

1

cos

x

\sec x= \dfrac{1}{\cos x}

secx=cosx1​

csc

x

=

1

sin

x

\csc x =\dfrac{1}{\sin x}

cscx=sinx1​

tan

2

x

=

sec

2

1

=

1

cos

2

x

1

=

1

cos

2

x

cos

2

x

=

sin

2

x

cos

2

x

\tan^2x=\sec^2-1=\dfrac{1}{\cos^2x}-1=\dfrac{1-\cos^2x}{\cos^2x}=\dfrac{\sin^2x}{\cos^2x}

tan2x=sec2−1=cos2x1​−1=cos2x1−cos2x​=cos2xsin2x​

cot

2

=

csc

2

x

1

=

1

sin

2

x

1

=

1

sin

2

x

sin

2

x

=

cos

2

x

sin

2

x

\cot^2=\csc^2x-1=\dfrac{1}{\sin^2x}-1=\dfrac{1-\sin^2x}{\sin^2x}=\dfrac{\cos^2x}{\sin^2x}

cot2=csc2x−1=sin2x1​−1=sin2x1−sin2x​=sin2xcos2x​

cos

x

=

sin

(

x

+

π

2

)

\cos x=\sin(x+\dfrac{\pi}{2})

cosx=sin(x+2π​),

sin

x

\sin x

sinx 向左平移

π

2

\dfrac{\pi}{2}

2π​. (左加右减)

sin

x

=

cos

(

x

π

2

)

\sin x=\cos(x-\dfrac{\pi}{2})

sinx=cos(x−2π​)

cos

x

=

cos

(

x

)

\cos x= \cos(-x)

cosx=cos(−x),偶函数

sin

x

=

sin

(

x

)

\sin x = - \sin(-x)

sinx=−sin(−x),奇函数

sin

x

=

sin

(

x

±

π

)

\sin x= -\sin(x\pm\pi)

sinx=−sin(x±π),

sin

x

\sin x

sinx无论是向左、还是向右平移

π

\pi

π 个单位后,乘以-1,关于x轴对称之后函数图像不变.

cos

x

=

cos

(

x

±

π

)

\cos x = -\cos(x\pm\pi)

cosx=−cos(x±π)

arcsin

x

+

arccos

x

=

π

2

\arcsin x+\arccos x=\dfrac{\pi}{2}

arcsinx+arccosx=2π​.

倍(半)角公式

cos

(

A

±

B

)

=

cos

A

cos

B

sin

A

sin

B

\cos(A\pm B)=\cos A\cdot\cos B \mp \sin A\cdot\sin B

cos(A±B)=cosA⋅cosB∓sinA⋅sinB.

sin

(

A

±

B

)

=

sin

A

cos

B

±

cos

A

sin

B

\sin(A\pm B)=\sin A\cdot\cos B \pm \cos A\cdot\sin B

sin(A±B)=sinA⋅cosB±cosA⋅sinB.

cos

(

2

A

)

=

cos

2

A

sin

2

A

=

1

2

sin

2

A

=

2

cos

2

A

1

\cos(2A)=\cos^2A-\sin^2A=1-2\sin^2A=2\cos^2A-1

cos(2A)=cos2A−sin2A=1−2sin2A=2cos2A−1.

cos

A

=

cos

2

A

2

sin

2

A

2

=

1

2

sin

2

A

2

=

2

cos

2

A

2

1

\cos A = \cos^2\dfrac{A}{2}-\sin^2\dfrac{A}{2}=1-2\sin^2\dfrac{A}{2}=2\cos^2\dfrac{A}{2}-1

cosA=cos22A​−sin22A​=1−2sin22A​=2cos22A​−1.

sin

(

2

A

)

=

2

sin

A

cos

A

\sin(2A)=2\sin A\cdot\cos A

sin(2A)=2sinA⋅cosA.

sin

A

=

2

sin

A

2

cos

A

2

\sin A = 2\sin\dfrac{A}{2}\cdot\cos\dfrac{A}{2}

sinA=2sin2A​⋅cos2A​.

tan

2

α

=

2

tan

α

1

tan

2

α

\tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha}

tan2α=1−tan2α2tanα​.

tan

α

=

2

tan

α

2

1

tan

2

α

2

\tan\alpha=\dfrac{2\tan\dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}}

tanα=1−tan22α​2tan2α​​.

tan

α

2

=

1

cos

α

sin

α

=

sin

α

1

+

cos

α

\tan\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha}{1+\cos\alpha}

tan2α​=sinα1−cosα​=1+cosαsinα​.

tan

2

α

=

sin

2

α

cos

2

α

=

2

sin

α

cos

α

1

2

sin

2

α

=

2

tan

α

1

cos

2

α

2

tan

2

α

=

2

tan

α

1

sin

2

α

cos

2

α

tan

2

α

=

2

tan

α

1

tan

2

α

.

\tan2\alpha=\dfrac{\sin2\alpha}{\cos2\alpha}=\dfrac{2\sin\alpha\cdot\cos\alpha}{1-2\sin^2\alpha}=\dfrac{2\tan\alpha}{\dfrac{1}{\cos^2\alpha}-2\tan^2\alpha}=\dfrac{2\tan\alpha}{\dfrac{1-\sin^2\alpha}{\cos^2\alpha}-\tan^2\alpha}=\dfrac{2\tan\alpha}{1-\tan^2\alpha}.

tan2α=cos2αsin2α​=1−2sin2α2sinα⋅cosα​=cos2α1​−2tan2α2tanα​=cos2α1−sin2α​−tan2α2tanα​=1−tan2α2tanα​.

tan

α

=

2

tan

α

2

1

tan

2

α

2

\tan\alpha=\dfrac{2\tan\dfrac{\alpha}{2}}{1-\tan^2\dfrac{\alpha}{2}}

tanα=1−tan22α​2tan2α​​

tan

α

tan

α

tan

2

α

2

=

2

tan

α

2

\tan\alpha-\tan\alpha\tan^2\dfrac{\alpha}{2}=2\tan\dfrac{\alpha}{2}

tanα−tanαtan22α​=2tan2α​

tan

α

tan

2

α

2

+

2

tan

α

2

tan

α

=

0

\tan\alpha\cdot\tan^2\dfrac{\alpha}{2}+2\tan\dfrac{\alpha}{2}-\tan\alpha=0

tanα⋅tan22α​+2tan2α​−tanα=0 求根公式:

tan

α

2

=

2

±

4

+

4

tan

2

α

2

tan

α

=

1

±

sec

α

tan

α

=

cos

α

±

1

sin

α

\tan\dfrac{\alpha}{2}=\dfrac{-2\pm\sqrt{4+4\tan^2\alpha}}{2\tan\alpha}=\dfrac{-1\pm\sec\alpha}{\tan\alpha}=\dfrac{-\cos\alpha\pm1}{\sin\alpha}

tan2α​=2tanα−2±4+4tan2α

​​=tanα−1±secα​=sinα−cosα±1​ 当

α

(

0

,

π

)

\alpha\in(0,\pi)

α∈(0,π) 时,

tan

α

2

>

0

\tan\dfrac{\alpha}{2}>0

tan2α​>0,而

cos

α

+

1

sin

α

<

0

-\dfrac{\cos\alpha+1}{\sin\alpha}<0

−sinαcosα+1​<0.

tan

α

2

=

cos

α

+

1

sin

α

\therefore \tan\dfrac{\alpha}{2}=-\dfrac{\cos\alpha+1}{\sin\alpha}

∴tan2α​=−sinαcosα+1​ 不成立.

tan

α

2

=

1

cos

α

sin

α

=

(

1

cos

α

)

(

1

+

cos

α

)

sin

α

+

sin

α

cos

α

=

1

cos

2

α

sin

α

+

sin

α

cos

α

=

sin

α

1

+

cos

α

\therefore \tan\dfrac{\alpha}{2}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{(1-\cos\alpha)\cdot(1+\cos\alpha)}{\sin\alpha+\sin\alpha\cdot\cos\alpha}=\dfrac{1-\cos^2\alpha}{\sin\alpha+\sin\alpha\cdot\cos\alpha}=\dfrac{\sin\alpha}{1+\cos\alpha}

∴tan2α​=sinα1−cosα​=sinα+sinα⋅cosα(1−cosα)⋅(1+cosα)​=sinα+sinα⋅cosα1−cos2α​=1+cosαsinα​

正、余弦化切弦

sin

2

x

=

2

sin

x

cos

x

=

2

tan

x

sec

2

x

=

2

tan

x

1

+

tan

2

x

\sin2x=2\sin x\cdot\cos x=\dfrac{2\tan x}{\sec^2x}=\dfrac{2\tan x}{1+\tan^2x}

sin2x=2sinx⋅cosx=sec2x2tanx​=1+tan2x2tanx​.

cos

2

x

=

cos

2

x

sin

2

x

=

1

tan

2

x

sec

2

x

=

1

tan

2

x

1

+

tan

2

x

\cos2x=\cos^2x-\sin^2x=\dfrac{1-\tan^2x}{\sec^2x}=\dfrac{1-\tan^2x}{1+\tan^2x}

cos2x=cos2x−sin2x=sec2x1−tan2x​=1+tan2x1−tan2x​.

sin

x

=

2

tan

x

2

1

+

tan

2

x

2

\sin x=\dfrac{2\tan\dfrac{x}{2}}{1+\tan^2\dfrac{x}{2}}

sinx=1+tan22x​2tan2x​​.

cos

x

=

1

tan

2

x

2

1

+

tan

2

x

2

\cos x=\dfrac{1-\tan^2\dfrac{x}{2}}{1+\tan^2\dfrac{x}{2}}

cosx=1+tan22x​1−tan22x​​.

辅助角公式

sin

α

a

a

2

+

b

2

cos

α

b

a

2

+

b

2

=

sin

α

cos

β

cos

α

sin

β

=

sin

(

α

β

)

\sin\alpha\cdot\dfrac{a}{\sqrt{a^2+b^2}}-\cos\alpha\cdot\dfrac{b}{\sqrt{a^2+b^2}}=\sin\alpha\cdot\cos\beta-\cos\alpha\cdot\sin\beta=\sin(\alpha-\beta)

sinα⋅a2+b2

​a​−cosα⋅a2+b2

​b​=sinα⋅cosβ−cosα⋅sinβ=sin(α−β).

其中,令

cos

β

=

a

a

2

+

b

2

\cos\beta=\dfrac{a}{\sqrt{a^2+b^2}}

cosβ=a2+b2

​a​,

sin

β

=

b

a

2

+

b

2

\sin\beta=\dfrac{b}{\sqrt{a^2+b^2}}

sinβ=a2+b2

​b​,

则有

cos

2

β

+

sin

2

β

=

(

a

a

2

+

b

2

)

2

+

(

b

a

2

+

b

2

)

2

=

1

\cos^2\beta+\sin^2\beta=\Big(\dfrac{a}{\sqrt{a^2+b^2}}\Big)^2+\Big(\dfrac{b}{\sqrt{a^2+b^2}}\Big)^2=1

cos2β+sin2β=(a2+b2

​a​)2+(a2+b2

​b​)2=1.

E

m

L

2

ω

2

+

R

2

(

R

sin

ω

t

L

ω

cos

ω

t

)

\dfrac{E_m}{L^2\omega^2+R^2}\cdot\big(R\cdot\sin\omega t-L\omega\cdot\cos\omega t\big)

L2ω2+R2Em​​⋅(R⋅sinωt−Lω⋅cosωt)

=

E

m

L

2

ω

2

+

R

2

(

sin

ω

t

R

L

2

ω

2

+

R

2

cos

ω

t

L

ω

L

2

ω

2

+

R

2

)

=\dfrac{E_m}{\sqrt{L^2\omega^2+R^2}}\cdot\big(\sin\omega t\cdot\dfrac{R}{\sqrt{L^2\omega^2+R^2}}-\cos\omega t\cdot\dfrac{L\omega}{\sqrt{L^2\omega^2+R^2}}\big)

=L2ω2+R2

​Em​​⋅(sinωt⋅L2ω2+R2

​R​−cosωt⋅L2ω2+R2

​Lω​)

=

E

m

L

2

ω

2

+

R

2

sin

(

ω

t

φ

)

=\dfrac{E_m}{\sqrt{L^2\omega^2+R^2}}\cdot\sin(\omega t-\varphi)

=L2ω2+R2

​Em​​⋅sin(ωt−φ).

其中

cos

φ

=

R

L

2

ω

2

+

R

2

\cos\varphi=\dfrac{R}{\sqrt{L^2\omega^2+R^2}}

cosφ=L2ω2+R2

​R​,

sin

φ

=

L

ω

L

2

ω

2

+

R

2

\sin\varphi=\dfrac{L\omega}{\sqrt{L^2\omega^2+R^2}}

sinφ=L2ω2+R2

​Lω​.

积化和差、和差化积

参考往期文章,点击跳转

相关推荐

被封号的守望先锋玩家必看:应对封号指南与恢复账号的全攻略
为什么那么多人讨厌王菲?
mobile365体育投注网站

为什么那么多人讨厌王菲?

🌍 08-15 👁️ 4225
自制茶包的做法
mobile365体育投注网站

自制茶包的做法

🌍 10-30 👁️ 6357